Computing Approximate PSD Factorizations

نویسندگان

  • Amitabh Basu
  • Michael Dinitz
  • Xin Li
چکیده

We give an algorithm for computing approximate PSD factorizations of nonnegative matrices. The running time of the algorithm is polynomial in the dimensions of the input matrix, but exponential in the PSD rank and the approximation error. The main ingredient is an exact factorization algorithm when the rows and columns of the factors are constrained to lie in a general polyhedron. This strictly generalizes nonnegative matrix factorizations which can be captured by letting this polyhedron to be the nonnegative orthant.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ILU and IUL factorizations obtained from forward and backward factored approximate inverse algorithms

In this paper‎, ‎an efficient dropping criterion has been used to compute the IUL factorization obtained from Backward Factored APproximate INVerse (BFAPINV) and ILU factorization obtained from Forward Factored APproximate INVerse (FFAPINV) algorithms‎. ‎We use different drop tolerance parameters to compute the preconditioners‎. ‎To study the effect of such a dropping on the quality of the ILU ...

متن کامل

Incremental incomplete LU factorizations with applications

This paper addresses the problem of computing preconditioners for solving linear systems of equations with a sequence of slowly varying matrices. This problem arises in many important applications. For example, a common situation in computational fluid dynamics, is when the equations change only slightly, possibly in some parts of the physical domain. In such situations it is wasteful to recomp...

متن کامل

Incremental Incomplete Lu Factorizations with Applications to Time-dependent Pdes

This paper addresses the problem of computing preconditioners for solving linear systems of equations with a sequence of slowly varying matrices. This problem arises in many important applications. For example, a common situation in computational fluid dynamics, is when the equations change only slightly, possibly in some parts of the physical domain. In such situations it is wastful to recompu...

متن کامل

Rapid factorization of structured matrices via randomized sampling

Randomized sampling has recently been demonstrated to be an efficient technique for computing approximate low-rank factorizations of matrices for which fast methods for computing matrix vector products are available. This paper describes an extension of such techniques to a wider class of matrices that are not themselves rankdeficient, but have off-diagonal blocks that are. Such matrices arise ...

متن کامل

RSVDPACK: An implementation of randomized algorithms for computing the singular value, interpolative, and CUR decompositions of matrices on multi-core and GPU architectures

RSVDPACK is a library of functions for computing low rank approximations of matrices. The library includes functions for computing standard (partial) factorizations such as the Singular Value Decomposition (SVD), and also so called “structure preserving” factorizations such as the Interpolative Decomposition (ID) and the CUR decomposition. The ID and CUR factorizations pick subsets of the rows/...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016